Phylogenetic position of Nigerian species of Curcuma longa (Zingiberaceae) in the Current Infrageneric Classification

Authors

  • Bashir Bolaji Tiamiyu Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin
  • Azeez Adebola Lateef Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin
  • Abdulquadri Sagaya Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin
  • Khadijah Abdulhamid Abdulkareem Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin
  • Bolaji Umar Olayinka Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin
  • AbdulAziz Ayinla Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
  • Sherif Babatunde Adeyemi Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin
  • Sarah Getachew Amenu Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
  • Professor A.A. AbdulRahaman Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin
  • Professor O.T. Mustapha Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin

DOI:

https://doi.org/10.53704/fujnas.v13i1.463

Keywords:

Curcuma longa, ITS, psbA-trnH, Sanger sequencing, Zingiberaceae

Abstract

Curcuma longa L. (commonly known as Tumeric) is the only species of the genus Curcuma found in Nigeria. It is of great economic importance to Nigeria, Africa, Asia, and other parts of the world, where it is widely used for ornamental and medicinal purposes, and as spices in food and beverages. However, the phylogenetic placement of the turmeric plant (C. longa) in Nigeria is far from being fully resolved, hence the need for this study. The rhizomes of turmeric were collected at the Forestry Research Institute of Nigeria, Ibadan, Oyo state. Genomic DNA was extracted, followed by the amplification of the ITS and psbA-trnH regions. Phylogenetic analysis was conducted using the Maximum likelihood method. The result resolved the phylogenetic position of Nigerian species and supported existing subgenera classification into three clades, all with high bootstrap support for the three clades. The result of this study supports the subgenera classification of the genus and further reveals the phylogenetic position of C. longa.

Keywords: Curcuma  longa,  ITS, psbA-trnH, Sanger Sequencing, Zingiberaceae

References

Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307-321.

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., & Jermiin, L.S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589.

Katoh, K., & Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.

Kress, W. J. & Kenneth, J. (2005). Proceedings of National Academy of Sciences, 8369: 837 [PMID: 15928076].

Kress, W.J., Prince, L.M., & Williams, K.K. (2002). The Phylogeny and a New Classification of the Gingers (Zingiberaceae): Evidence from Molecular Data. American Journal of Botany, 89 (11):1682-1696.

Larsen, K., Lock, J.M., Maas, H., & Maas, P. J. M. (1998). Zingiberaceae. In: Kubitzki K., editor. The families and genera of vascular plants. vol. 4. Berlin, Springer-Verlag: pp. 474–495.

Ivica Letunic, Peer Bork, Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation, Nucleic Acids Research, (2021); gkab301, https://doi.org/10.1093/nar/gkab301

Lateef, A. A., Garuba, T., Sa’ad, G., Olesin, M., Eperetun, G. G., & Tiamiyu, B. B. (2019). Isolation and molecular identification of dominant fungal endophytes from green leaves of physic nut (Jatropha curcas) from unilorin plantation, Ilorin, Nigeria.

Leong- Škorni?ková, J., Šída, O., Jarolímová, V., Sabu, M., Fér, T., Trávní?ek, P., et al. (2007). Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann. Bot. 100, 505–526. doi: 10.1093/aob/

Leong-Škorni?ková, J., Šída, O., Záveská, E., & Marhold, K. (2015). History of infrageneric classification, typification of supraspecific names, and outstanding transfers in Curcuma (Zingiberaceae). Taxon,64(2), 362-373. Retrieved June 23, 2020, from www.jstor.org/stable/24639312t

Mallet, J. (2005). Hybridization as an invasion of Zthe genome. Trends Ecol. Evol 20, 229-237. DOI:10.1016/j.tree2005.02.010.

Miller, J.T., Grimes, J.W., Murphy, D.J., Bayer, R. J., Ladiges, P.Y. (2003) A phylogenetic analysis of the Acacieae and Ingeae (Mimosoideae: Fabaceae) based on trnK, matK, psbA-trnH, and trnL/trnF sequence data. Systematic Botany 28: 558-566.

Minh, B.Q., Nguyen, M.A., & von Haeseler, A., (2013). Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188-1195.

Mort, M.E., Archibald, J.K., & Randle, C.P. (2007). Inferring phylogeny at low taxonomic levels: utility of rapidly evolving cpDNA and nuclear ITS loci. American Journal of Botany. 2007; 94:173–183.

Nguyen, L.T., Schmidt, H.A., von Haeseler, A., & Minh, B.Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274.

Oyebanji, O. O., Chukwuma, E. C., Bolarinwa, K. A., Adejobi, O. I., Adeyemi, S. B., & Ayoola, A. O. (2020). Re-evaluation of the phylogenetic relationships and species delimitation of two closely related families (Lamiaceae and Verbenaceae) using two DNA barcode markers. Journal of Biosciences, 45, 1-15.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., & Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539-542.

Talavera, G., & Castresana, J., 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564-577.

Uchegbu, R.I., Ngozi–Oleh, L.C & Ogbuneke, R. U. (2014) Essential oils composition of Curcuma longa rhizome from Nigeria. Am Chem Appl 1(1):1–5.

White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White. PCR protocols: a guide to methods and applications, 315– 322. Academic Press, San Diego, California, USA.

Yaradua, S. S., Alzahrani, D. A., & Bello, A. (2019). Phylogenetic position of West African species of the genus Crotalaria l. (Crotalarieae, Fabaceae) based on the current infrageneric classification. Pak. J. Bot, 51(4), 1453-1458.

Zaveska, E., Fer, T., Sida, O., Krak, K., Marhold, K. & Leong Skornickova, J. (2012). Phylogeny of Curcuma (Zingiberaceae) based on plastid and nuclear sequences: Proposal of the new subgenus Ecomata. Taxon 61: 747-7

Zhang, D., F. Gao, I. Jakovli?, H. Zou, J. Zhang, W. X., Li, G.T. & Wang (2020). PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20(1): p. 348–355. DOI: 10.1111/1755-0998.13096.

Downloads

Published

2024-03-29

How to Cite

Phylogenetic position of Nigerian species of Curcuma longa (Zingiberaceae) in the Current Infrageneric Classification. (2024). Fountain Journal of Natural and Applied Sciences, 13(1). https://doi.org/10.53704/fujnas.v13i1.463