Green synthesis of graphene/zinc oxide nanocomposite for Optoelectronic Applications
DOI:
https://doi.org/10.53704/gkzhw740Keywords:
: Green Synthesis, Zinc oxide, Graphene, Nanocomposite, Optoelectronic ApplicationAbstract
This research presents a green synthesis of high-quality graphene (G), zinc oxide (ZnO) and graphene/zinc oxide (G/ZnO) nanocomposites. Zinc Oxide nanoparticles (ZnO NPs) were synthesised using Amarus Pinnantum extracts, while graphene was derived from Bryophyllum Pinnatum shoot plant extracts. The integration of graphene into the ZnO matrix was investigated to enhance its structural, optical, and electrical properties, particularly electron mobility. The synthesised materials were characterised using UV-Vis spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). UV-Vis spectra revealed characteristic absorption bands for graphene, ZnO, and G/ZnO. FTIR analysis confirmed the presence of functional groups associated with each material, including 593 cm-1 (Zn-O bending vibrations), 1088 and 1459 cm-1 (C-H Alkyl group bending vibrations), 1583 cm-1 (C=C Aromatic stretching vibration), and 3467 and 3777 cm-1 (O-H Hydroxyl group stretching vibration) in the G/ZnO nanocomposites. Scanning Electron Microscopy (SEM) images showed spherical zinc oxide (ZnO) nanoparticles, a rough, flake-like graphene structure, and a porous, aggregated morphology for the G/ZnO nanocomposite. EDS analysis verified the elemental composition of the materials. The electrical properties of the G/ZnO nanocomposite were significantly improved compared to pure graphene and ZnO nanoparticles. The composite exhibited a higher current (4.62 μA) and lower resistivity (405.56 Ω·m) at a specific voltage (0.60 V). This enhancement is attributed to the formation of a percolative network within the composite, which facilitates efficient charge transfer and improves electron mobility. These findings suggest that the G/ZnO nanocomposite holds promise for applications in optoelectronic devices.
References
Abd, E., Alrubaie, A.-A. & Kadhim, R. E. (2019). Synthesis of ZnO Nanoparticles from Olive Plant Extract (Vol. 19, Issue 2).
Alamu, G. A., Adedokun, O., Bello, I. T. & Sanusi, Y. K. (2021). Plasmonic enhancement of visible light absorption in Ag-TiO2 based dye-sensitized solar cells. Chemical Physics Impact, 3, 100037. https://doi.org/10.1016/j.chphi.2021.100037
Arefi, M. R. & Rezaei-Zarchi, S. (2012). Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites. International Journal of Molecular Sciences, 13(4), 4340–4350. https://doi.org/10.3390/ijms13044340
Boutilier, M. S. H., Sun, C., O’Hern, S. C. & Au, H., Hadjiconstantinou, N. G., and Karnik, R. (2014). Implications of Permeation through Intrinsic Defects in Graphene on the Design of Defect-Tolerant Membranes for Gas Separation. ACS Nano, 8(1), 841–849. https://doi.org/10.1021/nn405537u
Chakraborty, A., Lucarelli, G., Xu, J., Skafi, Z., Castro-Hermosa, S., Kaveramma, A. B., Balakrishna, R. G. & Brown, T. M. (2024). Photovoltaics for indoor energy harvesting. Nano Energy, 128, 109932. https://doi.org/10.1016/j.nanoen.2024.109932
Djurii?, A. B., Ng, A. M. C. & Chen, X. Y. (2010). ZnO nanostructures for optoelectronics: Material properties and device applications. Progress in Quantum Electronics, 34(4), 191–259. https://doi.org/10.1016/j.pquantelec.2010.04.001
Farghali, M., Osman, A. I., Chen, Z., Abdelhaleem, A., Ihara, I., Mohamed, I. M. A., Yap, P.-S. & Rooney, D. W. (2023). Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: Areview. Environmental Chemistry Letters, 21(3), 1381–1418. https://doi.org/10.1007/s10311-023-01587-1
Gupta, Chatterjee, S., Ray, A. K. & Chakraborty, A. K. (2015). Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sensors and Actuators B: Chemical, 221, 1170–1181. https://doi.org/10.1016/j.snb.2015.07.070
Hao, Q., Li, P., Liu, J., Huang, J. & Zhang, W. (2023). Bandgap engineering of high mobility two-dimensional semiconductors toward optoelectronic devices. Journal of Materiomics, 9(3), 527–540. https://doi.org/10.1016/j.jmat.2022.11.009
Hoseinpour, V. , Souri, M. , Ghaemi, N. & Shakeri, A. (2017). Optimization of green synthesis of ZnO nanoparticles by Dittrichia graveolens (L.) aqueous extract. Health Biotechnol. Biopharma, 39–49.
Huang, D., Yang, T., Mo, Z., Guo, Q., Quan, S., Luo, C. & Liu, L. (2016). Preparation of Graphene/TiO2 Composite Nanomaterials and Its Photocatalytic Performance for the Degradation of 2,4-Dichlorophenoxyacetic Acid. Journal of Nanomaterials, 2016, 1–11. https://doi.org/10.1155/2016/5858906
Jayarambabu, N., Siva Kumari, B., Venkateswara Rao K. & Prabhu Y.T. (2014). Germination and Growth Characteristics of Mungbean Seeds (Vigna radiata L.) affected by Synthesized Zinc Oxide Nanoparticles. International Journal of Current Engineering and Technology.
Kachere, A. R., Kakade, P. M., Kanwade, A. R., Dani, P., Mandlik, N. T., Rondiya, S. R., Dzade, N. Y., Jadkar, S. R. & Bhosale, S. V. (2021). Zinc Oxide/Graphene Oxide Nanocomposites: Synthesis, Characterization and Their Optical Properties. ES Materials and Manufacturing. https://doi.org/10.30919/esmm5f516
Khalil, M., Ismael, E., Mohamed, H. & Elaasser, M. (2020). Green synthesis of zinc oxide nanoparticles using Portulaca oleracea (Regla seeds) extract and its biomedical applications. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2020.45592.2930
Kumar, N., Salehiyan, R., Chauke, V., Joseph Botlhoko, O., Setshedi, K., Scriba, M., Masukume, M. & Sinha Ray, S. (2021). Top-down synthesis of graphene: A comprehensive review. In FlatChem (Vol. 27). Elsevier B.V. https://doi.org/10.1016/j.flatc.2021.100224
Li, B., Liu, T., Wang, Y. & Wang, Z. (2012). ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 377(1), 114–121. https://doi.org/10.1016/j.jcis.2012.03.060
Liu, X., Liu, W., Ko, M., Park, M., Kim, M. G., Oh, P., Chae, S., Park, S., Casimir, A., Wu, G. & Cho, J. (2015). Metal (Ni, Co)?Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts. Advanced Functional Materials, 25(36), 5799–5808. https://doi.org/10.1002/adfm.201502217
Maalouf, A., Okoroafor, T., Jehl, Z., Babu, V. & Resalati, S. (2023). A comprehensive review on life cycle assessment of commercial and emerging thin-film solar cell systems. Renewable and Sustainable Energy Reviews, 186, 113652. https://doi.org/10.1016/j.rser.2023.113652
Machín, A. & Márquez, F. (2024). Advancements in Photovoltaic Cell Materials: Silicon, Organic, and Perovskite Solar Cells. Materials, 17(5), 1165. https://doi.org/10.3390/ma17051165
Malhotra, S. P. K. & Alghuthaymi, M. A. (2022). Biomolecule-assisted biogenic synthesis of metallic nanoparticles. In Agri-Waste and Microbes for Production of Sustainable Nanomaterials (pp. 139–163). Elsevier. https://doi.org/10.1016/B9780-12-823575-1.00011-1
Maruthupandy, M., Qin, P., Muneeswaran, T., Rajivgandhi, G., Quero, F. & Song, J.-M. (2020). Graphene-zinc oxide nanocomposites (G-ZnO NCs): Synthesis, characterization and their photocatalytic degradation of dye molecules. Materials Science and Engineering: B, 254, 114516. https://doi.org/10.1016/j.mseb.2020.114516
Nagaraj, E., Shanmugam, P., Karuppannan, K., Chinnasamy, T. & Venugopal, S. (2020). The biosynthesis of a graphene oxide-based zinc oxide nanocomposite using Dalbergia latifolia leaf extract and its biological applications. New Journal of Chemistry, 44(5), 2166–2179. https://doi.org/10.1039/C9NJ04961D
O’Hern, S. C., Boutilier, M. S. H., Idrobo, J.-C., Song, Y., Kong, J., Laoui, T., Atieh, M. & Karik, R. (2014). Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes. Nano Letters, 14(3), 1234–1241. https://doi.org/10.1021/nl404118f
Payrazm, S., Baghshahi, S., Sadeghian, Z. & Aliabadizadeh, A. (2022). Structural and Optical Characterization of ZnO-Graphene Nanocomposite Quantum Dots. Iranian Journal of Materials Science and Engineering, 19(3). https://doi.org/10.22068/ijmse.2603
Qu, J., Luo, C., Zhang, Q., Cong, Q. & Yuan, X. (2013). Easy synthesis of graphene sheets from alfalfa plants by treatment of nitric acid. Materials Science and Engineering: B, 178(6), 380–382. https://doi.org/10.1016/j.mseb.2013.01.016
Rahman, F., Majed Patwary, M. A., Bakar Siddique, Md. A., Bashar, M. S., Haque, Md. A., Akter, B., Rashid, R., Haque, Md. A. & Royhan Uddin, A. K. M. (2022). Green synthesis of zinc oxide nanoparticles using Cocos nucifera leaf extract: characterization, antimicrobial, antioxidant and photocatalytic activity. Royal Society Open Science, 9(11). https://doi.org/10.1098/rsos.220858
Shahryari, Z., Yeganeh, M., Gheisari, K. & Ramezanzadeh, B. (2021). A brief review of the graphene oxide-based polymer nanocomposite coatings: preparation, characterization, and properties. Journal of Coatings Technology and Research, 18(4), 945–969. https://doi.org/10.1007/s11998-021-00488-8
Sin Tee, T., Chun Hui, T., Wu Yi, C., Chi Chin, Y., Umar, A. A., Riski Titian, G., Hock Beng, L., Kok Sing, L., Yahaya, M. & Salleh, M. M. (2016). Microwave-assisted hydrolysis preparation of highly crystalline ZnO nanorod array for room temperature photoluminescence-based CO gas sensor. Sensors and Actuators B: Chemical, 227, 304–312. https://doi.org/10.1016/j.snb.2015.12.058
Sun, K., Xiao, H., Liu, S., You, S., Yang, F., Dong, Y., Wang, W. & Liu, Y. (2020). A Review of Clean Electricity Policies—From Countries to Utilities. Sustainability, 12(19), 7946. https://doi.org/10.3390/su12197946
Verduci, R., Romano, V., Brunetti, G., Yaghoobi Nia, N., Di Carlo, A., D’Angelo, G. & Ciminelli, C. (2022). Solar Energy in Space Applications: Review and Technology Perspectives. Advanced Energy Materials, 12(29). https://doi.org/10.1002/aenm.202200125
Wu, W., Wen, X. & Wang, Z. L. (2013). Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging. Science, 340(6135), 952–957. https://doi.org/10.1126/science.1234855
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Adedokun Oluwaseun, Gbadero Damilare Sunday, Adedokun Kehinde Asamu, Ojo Adekunle Oluwafemi , Oyewole Olayinka Joshua, Adegboyega Oludele, Adenigba Victoria Olaide , Awodele Mojoyinola Kofoworola

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to Fountain Journal of Natural and Applied Sciences. Articles in FUJNAS are published on the Creative Commons Attribution 4.0 International license (CC BY 4.0).