Potential Consequences of Water-Soluble Acetaminophen-Chromium Combination in Clarias Gariepinus: Bioaccumulation and Oxidative Perturbations of Antioxidant Enzyme Activities

Authors

  • Ayoade L. Adejumo Department of Chemical Engineering, Osun State University, Osogbo, Nigeria
  • Saheed O. Basiru Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
  • Adebayo E. Adeleke Department of Basic Sciences, Adeleke University, Ede
  • Rasheed O. Adetoro Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
  • Harun K. Aremu Department of Biochemistry, Osun State University, Osogbo, Nigeria
  • Stephen O. Owolabi Department of Civil Engineering Adeleke University, Ede
  • Luqman A Azeez Department of Chemistry Osun State University Osogbo

DOI:

https://doi.org/10.53704/fujnas.v13i1.562

Keywords:

Acetaminophen, Bioaccumulation, Clarias gariepinus, Chromium, Enzymatic antioxidant

Abstract

In this study, emerging-recalcitrant water contaminants were examined to determine their impact on water quality and oxidative disruption of antioxidant markers in Clarias gariepinus (African catfish). Fifty C. gariepinus were randomly exposed to fresh water, 250 mg/L acetaminophen (ACT), 0.525 mg/L chromium (Cr) and a mixture of ACT+Cr – dosed water for 21 days. As compared to the control, dosed water did not significantly (p ˃ 0.05) affect dissolved oxygen (DO), but biochemical oxygen demand (BOD) significantly increased in ACT, ACT+Cr, and Cr-dosed water. Levels of ACT in C. gariepinus exposed to different concentrations followed by kidney ˃ gill ˃ liver ˃ heart. Likewise, higher Cr presence was found in C. gariepinus gills exposed to 0.350 mg/L Cr. Accordingly, kidneys and gills were the worst affected organs by ACT and Cr accumulation. All the targeted organs of C. gariepinus exposed to different concentrations of ACT+Cr showed a concentration-dependent reduction in catalase (CAT) activity, indicating the synergistic effects of ACT and heavy metals. Based on these results, ACT and Cr adversely affect the kidneys and gills of C. gariepinus, compromising their physiological activity. As a result, pharmaceutical wastes and heavy metal effluents released into the aquatic environment indiscriminately need to be monitored. 

Keywords   Acetaminophen, Bioaccumulation, Clarias gariepinus, Chromium, Enzymatic antioxidant

References

Abdel-Khalek A. A., Badran S. R. & Marie M. A. S. (2020). The efficient role of rice husk in reducing the toxicity of iron and aluminium oxides nanopartcles in Oreochromisniloticus: haematological, bioaccumulation, and histological endpoints. Water Air soil Pollution 231, 53. https://doi.org/10.1007/s11270-020-4424-2

Aebi H. (1974). Catalases. In: Bergmeyer, H.U (Ed), Methods of enzymatic analysis 2.Academic Press New York 673-684. https://doi.org/10.1016/B978-0-12-091302 - 250032-3

Ali H., Khan H. & E., Ilahi I. (2019). Environmental chemistry and ecotoxicologyof hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, (14), 6730305. https://doi.org/10.1155/2019/6730305

Al-kaf A. G., Naji, K. M., Abdallah, Q. Y. M. & Edrees W. H. (2017). Occurrence of acetaminophen in aquatic environment and transformation by microorganisms: A review. Chronic Pharma Sci 1, 341–355

AOAC. (2019). Association of Official AnalyticalChemists. Edition 21.

Aremu H. K., Adekale I. A., Azeez L. A., Busari H. K., Adebisi O., Iwalewa Z. O.,Alle O. E. & Musa D. A. (2022). Assessment of larvicidal and genotoxic potentials of extracts of Hyptissuaveolens against Culex quinquefasciatus based on enzyme profile and RAPD-PCR assay. Acta Tropical. 229, 106384. https://doi.org/10.1016/j.actatropica.2022.106384

Aslam S., & Yousafzai A. M. (2017). Chromium toxicity in fish: A review article, Journal of Entomology and Zoology Studies, 5(3): 1483-1488.

Azeez L., Aremu H. K. & Olabode O. A. (2022a). Bioaccumulation of silver and impairment of vital organs in Clarias gariepinus from co-exposure to silver nanoparticles and cow dung contamination. Bulletin of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00128-021-03403-4

Azeez L., Adebisi S. A., Adetoro R. O.Oyedeji A. O., Agbaje W. B. & Olabode O. A. (2022b). Foliar application of silver nanoparticles differently intervenes remediation statuses and oxidative stress indicators in Abelmoschus esculentus planted on gold-mined soil. International Journal of Phytoremediation1 :94978. https://doi.org/10.1080/15226514.2021.1949578

Azeez L., Adetoro R. O., Busari H. K., Aremu H. K., Adeleke J. T., Adewinbi S., Olabode A., & Ayandayo I. (2022c). AgNPs-TiO2 doped Calcined hydroxyapatite for effective removal of ibuprofen and acetaminophen. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2022.2106434

Bakshi A. & Panigrahi A. K. (2018). A comprehensive review on chromium induced alteration in fresh water fishes. Toxicology Reports 5, 440-447. https://doi.org/10.1016/j.toxrep.2018.03.007

Clairborne A. (1985). Catalase activity. In: Greenwald, R. A., Ed., CRC Handbook of methods for oxygen radical research, CRC Press, Boca Raton, pp 283-284

De Mandal S., Mathipi V., Muthukumaran R. B., Gurusubramanian G., Lalnunmawii E. & Kumar N. S. (2019). Amplicon sequencing and imputed metagenomic analysis of waste soil and sediment micro borne reveals, unique bacteria communities and their functional attributes, Environmental Monitoring Assessment, 191, 778. https://doi.org/10.1007/s10661-019-7879-0

Ding J., Lu G., & Li, Y. (2016). Interactive effects of selected pharmaceutical mixtures on bioaccumulation and biochemical status in Crucian carp (Carassiusauratus). Chemosphere, 148, 21-31. https://doi.org/10.1016/j.chemosphere.2016.01.017

Ebele A. J., Abou-Elwafa A. M. & Harrad S. (2017). Pharmaceutical and Personal Care Products (PPCPs) in freshwater aquatic environment. Emerging Contaminants 3, 1-16. https://doi.org/10.1016/j.emcon.2016.12.004

Ellman G. L. (1959). Tissue sulfhydryl groups, Archive Biochemical and biophysics 82 (1): 70–77

Erhunmwunse N. O., Tongo I. & Ezemonye L. I. (2021). Acute effects of acetaminophen on the developmental, swimming performance and cardiovascular activities of the African catfish embryos/ larvae (Clarias gariepinus). Ecotoxicology and Environmental Safety 208: 111482. https://doi.org/10.1016/j.ecoenv.2020.111482

Fawad M., Yousafzai A. M., Haseeb A., Ur Rehman H., Afridi A. J., Akhtar N., Saeed K. & Usma K. (2017). Acute toxicity and bioaccumulation of chromium in gills, skin, and intestine of goldfish (Carassius aurutus). Journal of Entomology and Zoology Studies 5(1), 568-571

Folarin O. S., Otitoloju A. A. & Amaeze N. H., (2018). Comparative ecotoxicological assessment of acetaminophen and diclofenac using freshwater African catfish Clarias gariepinus (Burchell 1822). Journal of Applied Science and Environmental Management 22(9), 1523-1529. https://doi.org/10.4314/jasem.v22i9.26

Ghosh S., Paul M., Raha A., Mukherjee P., Anindya B. & Si A., (2018). Statistical evaluation of biochemical oxygen demand of river water. Advance Pharmaceutical Journal. 3(4), 118-120.

Habig W. H., Pabst M. J. & Jakoby W. B. (1974).Glutathione – S - transferases, the first enzymatic step in marcapturic acid formation. Journal of Biological Chemistry 249 (22), 7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8

Hoyett Z., Owens, M. A., Clark C.J. & AbazingeM.(2016). A comprehensive evaluation of environmental risk assessment strategies for pharmaceuticals and personal care products. Ocean Coast Management.127, 74-80

Kakakhel M. A., Wu F., & Sajjad W. (2021). Long-term exposure to high-conc AgNps induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environmental Science and European Journal 33:14. https://doi.org/10.1186/s12302-021-00453-7

Kamila S, Shaw P, Islam S, & Chattopadhyay A. (2023). Ecotoxicology of hexavalent chromium in fish: An updated review. Science of Total Environment 10;890 : 164395. https://doi:10.1016/j.scitotenv.2023.164395

Kaur, M. & Jindal R., (2017). Oxidative stress response in liver, kidney and gills of ctenopharyngodonidellus (cuvier and valenciennes) exposed to chlorpyrifos. Molecular Journal of Biology and Medicine 1(4), 103-112

Khan S. U., Saleh T. A. & Wahab A. (2018). Nanosilver: new ageless and versatile biomedical therapeutic scaffold. International Journal of Nanomedicine 13, 733-762

Kumari B., Kumar V., Sinha A. K., De Boeck G., Ahsan J., Ghosh A. & Wang H. ( 2017). Toxicology of arsenic in fish and aquatic system. Environmental Chemistry Letters 14 (55): 1-22. https://doi.org/10.1007/s10311-016-0588-9

Li L., Long M., Islam F., Farooq M. A., Wang J., Mwamba T. M., Shou J. & Zhou W. (2019). Synergistic effects of chromium and copper on photosynthetic inhibition, sub-cellular distribution, and related gene expression in Brassica napus cultivars.Environmental Science Pollution Research International 12, 11827 - 11845. https://doi.org/10.1007/s11356-019-04450-5

Lian G., Wang, B., Lee, X., Li, L., Liu, T. & Lyu, W. (2019). Enhanced removal of hexavalent chromium by engineered biochar composite fabricated from phosphogypsum and distillers’ grains. Science of Total Environment. 697, 134119. https://doi.org/10.1016/j.scitotenv.2019.134119

Liang C., Lan, Z., Zhang, X. & Liu, Y. (2016). Mechanism for the primary transformation of acetaminophen in soil/water system. Journal of Water Resources. 98, 215 -224.https://doi.org/10.1016/j.watres.2016.04.027

Mechado A. B., Caprara J. F. Franceschi I. D., Linden R., Berles D. B. & Feksa L. R. (2018). Effects of chronic exposure to hexavalent chromium in water on oxidative stress parameters in Wistar rats. Journal of Biological Sciences, Volume 14(1), 43771. https://doi.org/10.4025/actascibiolsci.v41i1.43771

Mehwish F., & Khalid P. L. (2017). Oxidative stress and histopathological biomarkers of exposure to bisphenol-A in the freshwater fish, Ctenopharyngodonidella, Brazilian Journal on Pharmaceutical Science 53(3): 17003

Mintenig S. M., Bauerlein P. S., Koelmans A. A., Dekker S. C., & Wezel A. V., (2018). Closing gap between small and smaller: towards a framework to analyse nano-and microplastics in aqueous environmental samples. Environmental Science: Nano 5(7), 1640-1649

Misra H. P., & Fridovic, I., (1972). The role of superoxide anion in autoxidation of epinephrine and simple assay for superoxide dismutase. Journal of Biological Chemistry. 247: 3170-3175. https://doi.org/10.1016/S0021-9258(19)45228-9

Mitra S., Chakraborty A.J., Tareq A, Emran.T., Nainu F., Khusro A., Idris A.M., Khandaker M.U., Osman H., Alhumaydhi F.A. & Simal-Gandara J., (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saudi University-Science 34: 101865.https://doi.org/10.1016/j.jksus.2022.101865

Naguib M., Mahmoud U. M. & Mekkawawy I. M. (2020). Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; biochemical histopathological and histochemical studies. Toxicology Report 7, 133-141. https://doi.org/10.1016/j.toxrep.2020.01.002

Nakkeeran, E., Patra, C., Shahnaz, T., Rangabhashiyam, S. & Selvaraju, N., (2018). Continuous biosorption assessment for the removal of hexavalent chromium from aqueous solutions using Strychnosnux vomica fruit shell. Biological Resources and Technology (3): 256–260. https://doi.org/10.1016/j.biteb.2018.09.001

National Environmental Standards and RegulationsEnforcement Agency (NESREA), (2011). National Environmental (Surface and groundwater quality control) Regulations. (22), 45947

Okezie V. C., Odeke E. H., Esew O., Otori M. & Idio U. I., (2020). Physicochemical and elemental properties of the discharged wastewater from a brewery industry located in northwest Nigeria. International Journal of Engineering Science Invention, (9), 2319-6726.

Outa J. O., Kowenje C. O., Avenant-Oldewage A.& Jirza A., (2020). Trace elements in crustaceans moliusks and fish in the Kenya part of Lake Victoria: Bioaccumulation, Bioremediation and Health Risk Analysis. Archives Environmental contamination and toxicology 78, 589-603

Ravindra K. G., Sanjay K. S., Suresh M. & Mahesh C. C., (2014). Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation. doi: 10.1039/9781 782620174-00001

Owalude S. O., Odebunmi E.O. & Babalola K. O. (2020) Assessment of physico-chemical parameters of heavy metals in effluents from Odogunyan Industrial Estate, Lagos, Nigeria. Federal University of Dustin. Journal of Science. 4, 222-230. https://doi.org/10.33003/FJS-2020-0404-475

Papageorgiou M., kosma, C. & Lambropoulou, D. (2016). Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in central Greece. Science of Total Environment. 543, 547-569. https://doi.org/10.1016/j.scitotenv.2015.11.047

Perussolo M. C., Guiloski I. C., Lirola J. R. & Fockink D. H. (2019). Integrated biomarker response index to asseses toxic effects of environmentally relevant concentration of acetaminophen in a neotropical catfish (Rhamdia quelen). Journal of Ecotoxicology and Environmental Safety. 182: 109438. https://doi.org/10.1016/j.ecoenv.2019.109438

Pradip K. G. & Aradhi K. K. (2018). Soil and water contamination by potentially hazardous elements: A Case history from Indian Environmental Geochemistry 2, 33

Prambudy H., Supriyatin T. & Setiawan F. (2019). The testing of chemical oxygen demand and biological oxygen demand of river water in Cipagercirebon. Journal of Physics, Conference Series 1360, 01. https://doi.org/10.1088/1742- 6596/1360/1/012010

Rusydi A. F. (2018). Correlation between conductivity and total dissolved solid in various type of water. A review: Journal of Earth and Environmental Science. 118. https://doi.org/10.1088/1755-1315/118/1/012019

Shanker A. K. (2019). Chromium: Environmental pollution, health effects and mode of action. In Encyclopedia of Environmental Health. 624-633. https://doi.org/10.1016/B978-0-444-52272-6.00390-1

Shen C., Wei J., Wang T. & Wamg Y. (2019). Acute toxicity and responses of antioxidants to dibutylphtalate in neonate and adult Daphnia magna,Peer Journal 7, 6584. https://doi.org/10.7717/peerj.6584

Sirapan C. (2019). The relationship between the total dissolved solids and the conductivity value of drinking, water surface and waste water. Journal of Academic Research Conference in Amsterdam

Sonia, A., Ali & M. Y. (2017). Chromium toxicity in fish: A review article Journal of Entomology and Zoology Studies. 5 (3), 1483-1488

Tabrez S, Zughaib T. A. & Javed M. (2021). Bioaccumulation of heavy metals and their toxicity assessment in Mystus species. Saudi Journal of Biological Sciences 28(2), 1459 -1464. https://doi.org/10.1016/j.sjbs.2020.11.085

Tel H, Alta? Y. & Taner M.S., (2004). Adsorption Characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide, J. of Hazardous Materials, 112 (3), 225-231. https://doi.org/10.1016/j.jhazmat.2004.05.025

Ticho, A. L., Malhotra, P., Dudeja, P. K., Gill R.

K. & Alrefai W. A. (2019). Bile acid receptorsand gastrointestinal functions, Liver Research 3, 31-39. https://doi.org/10.1016/j.livres.2019.01.001

World Health Organization (WHO) (2011).

Guidelines for drinking-water quality (Geneva: health organization).

Zur J., Artur P., Ariel M., Hupert K. K.,

Wojcieszynska D., & Guzik U., (2018a). Organic micro pollutants: Acetaminophen and ibuprofen – toxicity, bio-degradation and genetic background of their utilization by bacteria, Journal of Environmental Science and Pollution Research 25:21498-21524. https://doi.org/10.1007/s11356-018-2517-x

Downloads

Published

2024-06-29

How to Cite

Potential Consequences of Water-Soluble Acetaminophen-Chromium Combination in Clarias Gariepinus: Bioaccumulation and Oxidative Perturbations of Antioxidant Enzyme Activities. (2024). Fountain Journal of Natural and Applied Sciences, 13(1). https://doi.org/10.53704/fujnas.v13i1.562