Molecular Characterization and Distribution of Malaria Vectors in three Agrarian Communities of Kano State, North West Nigeria

Main Article Content

Florence Darda
Maryam Eluma
Tolulope Oyeniyi
Samson Awolola
Georgina Mwansat
Nannim Nanvyat
Jael Asabe Yohanna

Abstract

Malaria vector abundance has been linked to certain agricultural practices. This work examined the impact of the agricultural practice of irrigation on the composition and seasonal distribution of malaria vectors in agrarian communities of Kano state. Longitudinal data collection was done four times a year, corresponding to different transmission seasons from early rains to late rainy season, early dry season to late dry season. Indoor-biting adult mosquitoes were collected using standard pyrethrum spray collection (PSC) techniques. Female Anopheles mosquitoes collected from houses were morphologically identified to species level. Molecular characterisation of the members of the Anopheles gambiae complex was carried out using PCR technique. Two thousand four hundred fifty-two (2452) adult female Anopheles species were collected throughout the study period. The Large Irrigation (LIC) and Urban Irrigation Communities (UIC) had a higher mean abundance of female Anopheles mosquitoes across seasons. There was a significant difference in the mean adult mosquito catch across the season (F =113.49, p≤0.001) and across the three communities (F = 44.73; p ≤0.001). Anopheles gambiae sl. was the most encountered among the four species, with a mean abundance of 11.94±11.76, 5.39±7.45 and 2.58 ±3.41 for LIC, UIC and NIC, respectively. Molecular characterisation of An. gambiae s.l. by PCR showed the presence of three sibling species, An. coluzzi, An. gambiae ss and An. arabiensis. An. Coluzzi was significantly more abundant across the three communities during the wet and dry seasons. The predominance of this species has implications for malaria control. This study shows that irrigation is likely to influence mosquito breeding, thus exposing community members to a higher risk of being bitten by infected vectors. A review of the ecology of Anopheles species, especially in urban environments, is needed, considering the current abundance of malaria vectors in the urban community.



Keywords: Seasonal, Abundance, Composition, Anopheles species, Irrigation, Urban

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Darda, F., Eluma, M., Oyeniyi , T. ., Awolola, S. ., Mwansat, G. ., Nanvyat, N., & Asabe Yohanna, J. . (2024). Molecular Characterization and Distribution of Malaria Vectors in three Agrarian Communities of Kano State, North West Nigeria. Fountain Journal of Natural and Applied Sciences, 13(2). https://doi.org/10.53704/fujnas.v13i2.479
Section
Articles
Author Biographies

Maryam Eluma, Nigerian Institute of Medical Research, Lagos State Nigeria

Department Of Public Health

Rank: Research Fellow 2

Tolulope Oyeniyi, Nigerian Institute of Medical Research, Lagos State, Nigeria

Department: Public Health and Epidemiology

Rank: Research Scientist

Samson Awolola, Nigerian Institute of Medical Research, Lagos State, Nigeria

Department: Public Health and Epidemiology

Rank: Director of Research

Georgina Mwansat , University Of Jos, Plateau State, Nigeria

Department of Zoology, University of Jos

Rank: Professor

Nannim Nanvyat, University Of Jos, Plateau State, Nigeria

Department of Zoology, University of Jos.
Rank: Lecturer I

Jael Asabe Yohanna, University Of Jos, Plateau State

Department of Zoology

Rank: Professor

References

Adeleke, M. A., Mafiana, C. F., Idowu, A. B., Adekunle, M. F. & Sam-Wobo, S.O. (2008). Mosquito larval habitats and public health implications in Abeokuta, Ogun State, Nigeria. Tanzania Journal of Health Research, 10, 103-107.

Afrane, Y. A., Lawson, B. W., Brenya, R., Kruppa, T. & Yan, G. (2012). The ecology of mosquitoes in an irrigated vegetable farm in Kumasi, Ghana: Abundance, productivity and survivorship. Parasites & Vectors,5 (233), 1–7.

Akpan, G. E., Adepoju, K. A., Oladosu, O. R. & Adelabu, S. A (2018). Dominant malaria vector species in Nigeria: Modelling potential distribution of Anopheles gambiae sensu lato and its siblings with MaxEnt. PLoS ONE 13(10), e0204233. Doi:10.1371/journal.pone.0204233

Aju-Ameh, C. O., Awolola, S. T., Mwansat, G .S. & Mafuyai, H. B. (2016). Malaria transmission indices of two dominant Anopheles species in selected rural and urban Benue State, North Central Nigeria communities. International Journal of Mosquito Research, 3, 31-35.

Amaechi, E. C., Ukpai, O.M., Ohaeri, C. C., Ejike, B., Irole-Eze, O. P., Egwu, O. & Nwadike, C. C (2018). Distribution and seasonal abundance of anopheline mosquitoes and their association with rainfall around irrigation and non-irrigation areas in Nigeria.UNED Research Journal, 10(2), 267-272.

Appawu, M., Owusu-Agyei, S., Dadzie, S., Asoala, V., Anto, F., Koram, K., Rogers W., Nkrumah, S., Hoffman, S. L. & Fryauff, D.J. (2004). Malaria transmission dynamics at a site in Northern Ghana proposed for testing malaria vaccines. Tropical Medicine & International Health,9, 164–170.

Awolola, T. S., Okwa, O., Hunt, R. H., Ogunrinade, A. F. & Coetzee, M. (2002). Dynamics of the malaria-vector populations in Coastal Lagos, South–Western Nigeria. Annals of Tropical Medicine & Parasitology, 96, 75–82.

Bamou, R., Rono, M., Degefa, T., Midega, J., Mbogo, C., Ingosi, P., Kamau, A., Ambelu, A., Birhanu, Z., Tushune, K., Kopya, E., Awono-Ambene, P., Tchuinkam, T., Njiokou, F., Yewhalaw, D., Nkondjio, A. & Mwangangi, A. (2021). Entomological and anthropological factors contributing to persistent malaria transmission in Kenya, Ethiopia, and Cameroon Cameroon. The Journal of Infectious Diseases, 223(2) S155–S170. https://doi.org/10.1093/infdis/jiaa774

Basher, K. & Tuno, N. (2014). Seasonal abundance of Anopheles mosquitoes and their association with meteorological factors and malaria incidence in Bangladesh.Parasites and Vectors, 7, 442.

Bashir, B. M., Abdussalam, Y. M. & Zainab, T. (2018). The intensity of malaria transmission and efficacy of alphacypermethrin as an indoor residual insecticide against malaria vectors in Kadawa, Kano. Bayero Journal of Pure and Applied Sciences, 11(1), 195 – 200.

Bunza, M. D., Suleiman, A. A., Yusuf, A.M.& Bala, A.Y. (2010). Relative abundance of mosquito species in Katsina metropolis, Katsina State, Nigeria. Nigerian Journal of Parasitology, 31 (2),73 -78.

Churcher, T. S., Sinden, R. E., Edwards, N. J., Poulton, I., Rampling, T. W., Brock, P. M., Griffin, J. T., Upton, L. M., Zakutansky, S. E., Sala, K. A., Angrisano, F., Hill, A. V, & Blagborough, A. M. (2017). The probability of malaria transmission from mosquito to human is regulated by mosquito parasite density in naïve and vaccinated hosts. Plos Pathogen, 13(1), E1006108.

Coetzee, M., Craig, M., & Lesueur, D. (2000). Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitology Today, 16 (2), 74–77.

Demissew, A., Hawaira, D., Kibret, S., Animut, A.,Tsegaye, A., Lee, M., Guiyunn, Y. & Yewhalaw, D. (2023). Impact of sugarcane irrigation on malaria vector anopheles mosquito fauna, abundance and seasonality in Arjo-Didessa, Ettiopia. Malaria journal, 19, 344 http://doi.org/10.1186/s12936-020-03416-0

Fanello, C., Santolamazza, F., & Della Torre, A. (2002). Simultaneous identification of species and molecular forms of Anopheles gambiae complex by PCR-RFLP. Medical and Veterinary Entomology, 16, 461-464.

Fernando, W. P. (2002). Malaria in irrigated agriculture. Papers and abstracts for the Sima special seminar at the ICID 18th International Congress on irrigation and drainage, Montreal, 23 July 2002. Pp. 29-38.

Fink, G., & Masiye, F. (2015). Health and Agricultural productivity: evidence from Zambia.Journal of Health Economics, 42, 51-164.

Gillett, J. D. & Smith, J. G. (1972). Common African mosquitoes and their medical importance. William Heinemann Medical Books Limited, London.

Gillies, M. T. & Coetzee, M. (1987). A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region) In Publications of the South African Institute for Medical Research. Johannesburg. Pp. 55.

Hawaria, D., Demissew, A., Kibret, S., Lee, M., Yewhalaw, D. & Yan, G. (2020). Effects of environmental modification on the diversity and positivity of anopheline mosquito aquatic habitats at Arjo-dedessa irrigation development site, Southwest Ethiopia. Infectious Diseases of Poverty, 9, 1.

Ibrahim, I., Yakudima, A. & Hamza A.I. (2014). Spatial Assessment of Severe Malaria Incidence in Kano State Using Multivariate Statistical Technique.Elixir Environment & Forestry 117, 50355-50359.

Kibret, S., Wilson, G., Tekie, H. & Petros, B. (2014). Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control. Malaria Journal, 13, 360.

Kigadye, E. S., Nkwengulila, G., Magesa, S. M. & Abdulla, S. (2010). Diversity, Spatial and temporal abundance of Anopheles gambiae complex in the Rufiji River basin, South-EasternTanzania. Tanzanian Journal of Health Research,12(1), 68-72.

Klinkenberg. E., McCall, P. J., Hastings, I. M., Wilson, M. D., Amerasinghe, F. P & Donnelly, M. J. (2005). Malaria and irrigated crops, Accra, Ghana. Emerging Infectious Diseases, 11 (8), 1290–1293.

Lamidi, T.B., Alo, E.B.& Naphtali, R. (2017). Distribution and abundance of Anopheles mosquito species in three selected areas of Taraba State, North-Eastern Nigeria. Animal Research International, 14(2), 2730 – 2740.

National Population Commission (NPC) and ICF. (2019). Nigeria demographic and health survey 2018. Abuja, Nigeria, Rockville, Maryland, USA: NPC and ICF.

Oduola, A. O., Adelaja, O. J., Aiyegbusi, Z. O., Tola, M., Obembe, A., Ande, A. T. & Awolola, S. (2016). Dynamics of anopheline vector species composition and reported malaria cases during rain and dry seasons in two selected communities of Kwara State. Nigerian Journal of Parasitology, 37(2), 157 –163.

Oguoma, V. M. & Ikpeze, O. O. (2008). Species composition and abundance of mosquitoes of a tropical irrigation ecosystem. Animal Research International, 5(2), 866 – 87.

Okorie, P. N., Ademowo, G. O., Irving, H., Kelly-Hope, L. A. & Wondji, C.S. (2015). Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan, Southwest Nigeria. Medical & Veterinary Entomology, 29 (1), 44–50.

Olayemi, I. K., Ande, A. T., Ayanwale, A. V., Mohammed, A. Z., Bello, I. M., Idris, B., Isah, B., Chukwuemeka, V. & Ukubuiwe, A.C. (2011). Seasonal trends in epidemiological and entomological profiles of malaria transmission in North Central Nigeria. Pakistan Journal of Biological Sciences, 14, 293-299.

Oluwasogo, A. O., Adeyemi, M. A., Gabriel, S., Kabir, O. O.& Owolabi, A. A. (2016). Diversity and abundance of Anopheles (Diptera: Culicidae) species complex in some selected settlements in Ogbomoso Local Government Area of Oyo-State, Nigeria. Malaria Control and Elimination, 5,146. http://doi.org/10.41872/2470-6965/1000146

Oringanje, C., Alaribe, A.A., Oduola, A. O., Oduwole, O. A., Adeogun, A. O, Meremikwu, M. M. & Awolola, T. S. (2011). Vector abundance and species composition of Anopheles mosquito in Calabar, Nigeria. Journal of Vector-Borne Diseases, 48, 171–173.

Oyewole, I. O. & Awolola, T. S. (2006). Impact of urbanisation on bionomics and distribution of malaria vectors in Lagos, Southwestern Nigeria. Journal of Vector-Borne Diseases, 43, 173–178.

Rono, J., Färnert, A., Murungi, L., Ojal, J., Kamuyu, G., Guleid, F., Nyangweso, G. Wambua, J., Kitsao, B., Olotu, A., Marsh, K.,& Osie, F. (2015). Multiple clinical episodes of Plasmodium falciparum malaria in a low transmission intensity setting: exposure versus immunity. BMC Medicine, 13, 114

Ricci, F. (2012). Social implications of malaria and their relationships with poverty.MediterraneanJournal of Hematology & Infectious Diseases, 4(1), E2012048.

Service M. W. (1993). Mosquito Ecology: Field Sampling Methods.2nd Edition, London and New York: Elsevier Publishers, Essex.

Simard, F., Ayala, D., Kamdem, G. C., Pombi, M. Etouna, M., Ose, K., Fotsing, J., Fontenille, D., Besansky, N. J. & Costantini, C. (2009). Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: The ecological side of speciation. BMC Ecology, 9,17. http://doi.org/10.1186/1472-6785-173-118

Sinka, M. E., Bangs, M. J., Manguin, S., Coetzee, M., Mbogo, C. M., Hemingway, J., Patil, A. P., Temperley, W. H., Gething, P. W.,Kabaria, G., Noor, S. & Linard, C. W, Okara, R.M., Boeckel, T.V., Godfray, H.C.J., Harbach, R.E.& Hay, S.I. (2010). The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: Occurrence data, distribution maps and bionomic précis. Parasites & Vectors, 3, 117. http://doi.org/10.1186/1756-3305-4-89

Surendran, S. N., Sivabalakrishnan, K., Sivasingham, S., Jayadas, T.P., Karvannan, K., Santhirasegaram, S., Gajapathy, K., Senthilnanthanan, M., Karunaratne, S.H. &Ramasamy, R. (2019). Anthropogenic factors driving recent range expansion of the malaria vector Anopheles stephensi. Frontiers in Public Health. https://doi.org/10.3389/fpubh.2019.00053

Sutherst, R. W. (2004). Global change and human vulnerability to vector-borne diseases. Clinical Microbiology Review, 17, 1136–173.

Tahereh, S., Asgarian, S., Hassan, M., Kazemi, M. & Mehdi, S. (2021). Impact of meteorological parameters on mosquito population abundance and distribution in a former malaria endemic area, central Iran. Heliyon 7(12).https://doi.org/ 10.1016/j.heliyon.2021.e08477/.

Townroe, S. & Callaghan, A. (2014). British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology. Plos One, 9(4), E95325.

Umar, I. A., Kabir, G. J., Abdullahi, M. B., Barde, A., Misau, A., Sambo, M. L., Babuga, U. & Kobi, M. (2015). Assessment of indoor resting density of female anopheline mosquitoes in human dwelling at malaria vector sentinel sites in Bauchi State, Nigeria. Advanced Studies in Biology, 7 (7), 323 – 333.

Wang, M., Marinotti, O., Vardo-Zalik, A., Boparai, R. & Yan, G. (2011). Genome-wide transcriptional analysis of genes associated with acute desiccation stress in Anopheles gambiae. PLoS ONE 6(10): e26011. doi:10.1371/journal.pone.0026011

World Health Organisation (2020). Malaria keyfacts. WHO Global Malaria Programme, Geneva,Switzerland https://www.who.int/newsroom/factsheets/detail/malaria

World Health Organization (2022). Malaria fact sheet. Accessed 8 December 2022 from https://www.who.int/news-room/fact-sheets/detail/malaria

Yadouléton, A., N'guessan, R., Allagbé, H., Asidi, A., Boko, M., Osse, R., Padonou, G., Kindé, G. & Akogbéto, M. (2010). The impact of the expansion of urban vegetable farming on malaria transmission in major cities of Benin. Parasites & Vectors,3:118. http://doi.org/10.1186/1756-05-3-118

Yahaya, A., Tyav, Y. B. & Nura, M. S. (2014). Seroprevalence of paediatric malaria infections in two hospitals in Kano State, Nigeria.International Journal of Sciences: Basic and Applied Research, 14 (1), 252-264.

Yakasai, M. U., Yayo, A., Ibrahim, S. A., Dabo, N. & Mukhtar, M. D. (2017). An appraisal on the occurrence of anopheline species as a marker of malaria transmission rate in irrigation site in Bunkure, Kano Nigeria. Bayero Journal of Pure and Applied Sciences, 10(1), 103–106.

Yakudima, I. I. & Adamu, Y. M. (2017). Retrospective study of seasonal trends of malaria reported cases in Kano State, Nigeria. Bayero Journal of Pure and Applied Sciences, 10(2), 238 – 244.

Yohanna, L., Mwansat, G. S. & Pam, D. D. (2019). The sporozoite infection rate of malaria vectors in an agrarian community in Shongom Local Government Area of Gombe State, North-Eastern Nigeria. International Journal of Malaria Research and Reviews, 7(1), 1-6.